Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
The Science of the total environment ; 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2274001

RESUMEN

The widespread COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) necessitated measures aimed at preventing the spread of SARS-CoV-2. To mitigate the risk of fomite-mediated transmission, environmental cleaning and disinfection regimes have been widely implemented. However, conventional cleaning approaches such as surface wipe downs can be laborious and more efficient and effective disinfecting technologies are needed. Gaseous ozone disinfection is one technology which has been shown to be effective in laboratory studies. Here, we evaluated its efficacy and feasibility in a public bus setting, using murine hepatitis virus (a related betacoronavirus surrogate) and the bacteria Staphylococcus aureus as test organisms. An optimal gaseous ozone regime resulted in a 3.65-log reduction of murine hepatitis virus and a 4.73-log reduction of S. aureus, and decontamination efficacy correlated with exposure duration and relative humidity in the application space. These findings demonstrated gaseous ozone disinfection in field settings which can be suitably translated to public and private fleets that share analogous characteristics. Graphical abstract Unlabelled Image

2.
Sci Total Environ ; 876: 162704, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2274002

RESUMEN

The widespread COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) necessitated measures aimed at preventing the spread of SARS-CoV-2. To mitigate the risk of fomite-mediated transmission, environmental cleaning and disinfection regimes have been widely implemented. However, conventional cleaning approaches such as surface wipe downs can be laborious and more efficient and effective disinfecting technologies are needed. Gaseous ozone disinfection is one technology which has been shown to be effective in laboratory studies. Here, we evaluated its efficacy and feasibility in a public bus setting, using murine hepatitis virus (a related betacoronavirus surrogate) and the bacteria Staphylococcus aureus as test organisms. An optimal gaseous ozone regime resulted in a 3.65-log reduction of murine hepatitis virus and a 4.73-log reduction of S. aureus, and decontamination efficacy correlated with exposure duration and relative humidity in the application space. These findings demonstrated gaseous ozone disinfection in field settings which can be suitably translated to public and private fleets that share analogous characteristics.


Asunto(s)
Antiinfecciosos , COVID-19 , Ozono , Ratones , Animales , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Descontaminación/métodos , Staphylococcus aureus , Pandemias/prevención & control , Desinfección/métodos
3.
Int J Environ Res Public Health ; 18(1)2020 12 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1006966

RESUMEN

Fomite-mediated transmission has been identified as a possible route for the spread of COVID-19 disease caused by SARS-CoV-2. In healthcare settings, environmental contamination by SARS-CoV-2 has been found in patients' rooms and toilets. Here, we investigated environmental presence of SARS-CoV-2 in non-healthcare settings and assessed the efficacy of cleaning and disinfection in removing virus contamination. A total of 428 environmental swabs and six air samples was taken from accommodation rooms, toilets and elevators that have been used by COVID-19 cases. By using a reverse transcription polymerase chain reaction assay, we detected two SARS-CoV-2 RNA positive samples in a room where a COVID-19 patient stayed prior to diagnosis. The present study highlights the risk of fomite-mediated transmission in non-healthcare settings and the importance of surface disinfection in spaces occupied by cases. Of note, neither air-borne transmission nor surface contamination of elevators, which were transiently exposed to infected individuals, was evident among samples analyzed.


Asunto(s)
COVID-19/transmisión , Fómites/virología , SARS-CoV-2/aislamiento & purificación , Desinfección , Contaminación Ambiental , Hospitales , Humanos
4.
International Journal of Environmental Research and Public Health ; 18(1):117, 2021.
Artículo en Inglés | ScienceDirect | ID: covidwho-984945

RESUMEN

Fomite-mediated transmission has been identified as a possible route for the spread of COVID-19 disease caused by SARS-CoV-2. In healthcare settings, environmental contamination by SARS-CoV-2 has been found in patients’rooms and toilets. Here, we investigated environmental presence of SARS-CoV-2 in non-healthcare settings and assessed the efficacy of cleaning and disinfection in removing virus contamination. A total of 428 environmental swabs and six air samples was taken from accommodation rooms, toilets and elevators that have been used by COVID-19 cases. By using a reverse transcription polymerase chain reaction assay, we detected two SARS-CoV-2 RNA positive samples in a room where a COVID-19 patient stayed prior to diagnosis. The present study highlights the risk of fomite-mediated transmission in non-healthcare settings and the importance of surface disinfection in spaces occupied by cases. Of note, neither air-borne transmission nor surface contamination of elevators, which were transiently exposed to infected individuals, was evident among samples analyzed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA